home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
1%
| dexvert
| Corel 10 Texture (image/corel10Texture)
| ext
| Unsupported |
1%
| dexvert
| Croteam texture file (image/croteamTextureFile)
| ext
| Unsupported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| LaTeX document text
| default
| |
99%
| file
| LaTeX document, ASCII text, with very long lines (871)
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| siegfried
| fmt/281 LaTeX (Subdocument)
| default
| |
100%
| detectItEasy
| Format: plain text[LF]
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 64 6f 63 75 6d 65 6e | 74 73 74 79 6c 65 5b 31 |\documen|tstyle[1|
|00000010| 31 70 74 2c 66 6c 65 71 | 6e 2c 65 70 73 66 2c 63 |1pt,fleq|n,epsf,c|
|00000020| 61 6c 63 5d 7b 61 72 74 | 69 63 6c 65 7d 0a 5c 6d |alc]{art|icle}.\m|
|00000030| 61 72 6b 72 69 67 68 74 | 7b 43 68 61 70 74 65 72 |arkright|{Chapter|
|00000040| 20 31 3a 20 41 6e 73 77 | 65 72 73 20 33 7d 0a 5c | 1: Answ|ers 3}.\|
|00000050| 62 65 67 69 6e 7b 64 6f | 63 75 6d 65 6e 74 7d 0a |begin{do|cument}.|
|00000060| 0a 5c 42 66 7b 43 68 61 | 70 74 65 72 20 31 3a 20 |.\Bf{Cha|pter 1: |
|00000070| 41 6e 73 77 65 72 73 20 | 33 20 5c 68 66 69 6c 6c |Answers |3 \hfill|
|00000080| 20 4a 61 63 6b 20 4b 2e | 20 43 6f 68 65 6e 20 5c | Jack K.| Cohen \|
|00000090| 68 66 69 6c 6c 20 43 6f | 6c 6f 72 61 64 6f 20 53 |hfill Co|lorado S|
|000000a0| 63 68 6f 6f 6c 20 6f 66 | 20 4d 69 6e 65 73 7d 0a |chool of| Mines}.|
|000000b0| 0a 5c 62 65 67 69 6e 7b | 65 6e 75 6d 65 72 61 74 |.\begin{|enumerat|
|000000c0| 65 7d 0a 5c 69 74 65 6d | 20 54 68 65 20 41 6c 70 |e}.\item| The Alp|
|000000d0| 68 61 20 6c 65 74 74 75 | 63 65 20 70 61 74 63 68 |ha lettu|ce patch|
|000000e0| 3a 0a 20 20 20 20 20 20 | 20 20 5c 62 65 67 69 6e |:. | \begin|
|000000f0| 7b 65 6e 75 6d 65 72 61 | 74 65 7d 0a 20 20 20 20 |{enumera|te}. |
|00000100| 20 20 20 20 5c 69 74 65 | 6d 20 20 60 42 65 73 74 | \ite|m `Best|
|00000110| 27 20 6d 65 61 6e 73 20 | 6d 61 78 69 6d 75 6d 20 |' means |maximum |
|00000120| 61 72 65 61 20 28 75 73 | 75 61 6c 6c 79 29 2e 0a |area (us|ually)..|
|00000130| 20 20 20 20 20 20 20 20 | 5c 69 74 65 6d 20 49 6e | |\item In|
|00000140| 74 75 69 74 69 76 65 6c | 79 20 61 20 73 71 75 61 |tuitivel|y a squa|
|00000150| 72 65 20 77 6f 75 6c 64 | 20 67 69 76 65 20 74 68 |re would| give th|
|00000160| 65 20 6d 61 78 69 6d 75 | 6d 20 61 72 65 61 20 61 |e maximu|m area a|
|00000170| 6d 6f 6e 67 20 61 6c 6c | 20 72 65 63 74 61 6e 67 |mong all| rectang|
|00000180| 75 6c 61 72 20 70 61 74 | 63 68 65 73 2e 20 20 54 |ular pat|ches. T|
|00000190| 68 75 73 20 74 68 65 20 | 73 69 64 65 20 28 24 78 |hus the |side ($x|
|000001a0| 24 29 20 69 73 20 31 30 | 30 2f 34 20 3d 20 32 35 |$) is 10|0/4 = 25|
|000001b0| 20 6d 20 61 6e 64 20 74 | 68 65 20 6d 61 78 69 6d | m and t|he maxim|
|000001c0| 75 6d 20 61 72 65 61 20 | 69 73 20 36 32 35 20 6d |um area |is 625 m|
|000001d0| 24 5e 32 24 2e 0a 20 20 | 20 20 20 20 20 20 5c 69 |$^2$.. | \i|
|000001e0| 74 65 6d 20 59 6f 75 72 | 20 66 69 67 75 72 65 20 |tem Your| figure |
|000001f0| 73 68 6f 75 6c 64 20 68 | 61 76 65 20 73 68 6f 77 |should h|ave show|
|00000200| 6e 20 61 20 72 65 63 74 | 61 6e 67 6c 65 20 77 69 |n a rect|angle wi|
|00000210| 74 68 20 74 77 6f 20 66 | 61 63 69 6e 67 20 73 69 |th two f|acing si|
|00000220| 64 65 73 20 6c 61 62 65 | 6c 65 64 20 77 69 74 68 |des labe|led with|
|00000230| 20 24 78 24 20 61 6e 64 | 20 74 68 65 20 6f 74 68 | $x$ and| the oth|
|00000240| 65 72 20 74 77 6f 20 77 | 69 74 68 20 24 31 30 30 |er two w|ith $100|
|00000250| 20 2d 20 32 78 20 3d 20 | 32 28 35 30 20 2d 20 78 | - 2x = |2(50 - x|
|00000260| 29 24 20 2e 0a 20 20 20 | 20 20 20 20 20 5c 69 74 |)$ .. | \it|
|00000270| 65 6d 20 24 78 24 20 69 | 73 20 6f 6e 65 20 73 69 |em $x$ i|s one si|
|00000280| 64 65 20 6f 66 20 74 68 | 65 20 72 65 63 74 61 6e |de of th|e rectan|
|00000290| 67 6c 65 2c 20 24 41 24 | 20 69 73 20 69 74 73 20 |gle, $A$| is its |
|000002a0| 61 72 65 61 2e 20 20 54 | 68 65 20 76 61 6c 69 64 |area. T|he valid|
|000002b0| 20 24 78 24 2d 76 61 6c | 75 65 73 20 28 74 68 65 | $x$-val|ues (the|
|000002c0| 20 60 60 64 6f 6d 61 69 | 6e 27 27 20 6f 66 20 24 | ``domai|n'' of $|
|000002d0| 41 24 29 20 61 72 65 20 | 24 5b 30 2c 20 35 30 5d |A$) are |$[0, 50]|
|000002e0| 24 20 62 65 63 61 75 73 | 65 20 6f 75 74 73 69 64 |$ becaus|e outsid|
|000002f0| 65 20 74 68 69 73 20 69 | 6e 74 65 72 76 61 6c 20 |e this i|nterval |
|00000300| 61 20 73 69 64 65 20 77 | 69 6c 6c 20 61 73 73 75 |a side w|ill assu|
|00000310| 6d 65 20 61 20 6e 6f 6e | 2d 70 68 79 73 69 63 61 |me a non|-physica|
|00000320| 6c 20 6e 65 67 61 74 69 | 76 65 20 76 61 6c 75 65 |l negati|ve value|
|00000330| 2e 20 20 57 65 20 6b 6e | 6f 77 20 74 68 61 74 20 |. We kn|ow that |
|00000340| 65 76 65 6e 20 74 68 65 | 20 65 6e 64 70 6f 69 6e |even the| endpoin|
|00000350| 74 20 76 61 6c 75 65 73 | 20 30 20 61 6e 64 20 35 |t values| 0 and 5|
|00000360| 30 20 63 61 6e 27 74 20 | 62 65 20 72 69 67 68 74 |0 can't |be right|
|00000370| 20 73 69 6e 63 65 20 74 | 68 65 6e 20 74 68 65 20 | since t|hen the |
|00000380| 61 72 65 61 20 69 73 20 | 7a 65 72 6f 2c 20 62 75 |area is |zero, bu|
|00000390| 74 20 69 74 20 64 6f 65 | 73 20 6e 6f 20 68 61 72 |t it doe|s no har|
|000003a0| 6d 20 74 6f 20 69 6e 63 | 6c 75 64 65 20 74 68 65 |m to inc|lude the|
|000003b0| 73 65 20 61 6e 64 20 77 | 65 27 6c 6c 20 73 65 65 |se and w|e'll see|
|000003c0| 20 6c 61 74 65 72 20 74 | 68 61 74 20 70 6f 73 69 | later t|hat posi|
|000003d0| 6e 67 20 6d 61 78 69 6d | 75 6d 20 6f 72 20 6d 69 |ng maxim|um or mi|
|000003e0| 6e 69 6d 75 6d 20 70 72 | 6f 62 6c 65 6d 73 20 6f |nimum pr|oblems o|
|000003f0| 6e 20 61 20 5c 45 6d 7b | 63 6c 6f 73 65 64 7d 20 |n a \Em{|closed} |
|00000400| 69 6e 74 65 72 76 61 6c | 20 68 61 73 20 73 6f 6d |interval| has som|
|00000410| 65 20 74 68 65 6f 72 65 | 74 69 63 61 6c 20 61 64 |e theore|tical ad|
|00000420| 76 61 6e 74 61 67 65 73 | 2e 0a 20 20 20 20 20 20 |vantages|.. |
|00000430| 20 20 20 20 20 20 20 20 | 20 20 5c 69 74 65 6d 20 | | \item |
|00000440| 54 68 65 20 20 76 61 6c | 75 65 73 20 69 6e 20 74 |The val|ues in t|
|00000450| 68 65 20 6d 69 64 64 6c | 65 20 6f 66 20 74 68 65 |he middl|e of the|
|00000460| 20 6d 6f 73 74 20 72 65 | 66 69 6e 65 64 20 5c 54 | most re|fined \T|
|00000470| 74 7b 54 61 62 6c 65 7d | 20 61 72 65 3a 0a 20 20 |t{Table}| are:. |
|00000480| 20 20 20 20 20 20 5c 62 | 65 67 69 6e 7b 76 65 72 | \b|egin{ver|
|00000490| 62 61 74 69 6d 7d 20 20 | 20 20 20 20 20 20 0a 20 |batim} | . |
|000004a0| 20 20 20 20 20 20 20 32 | 34 2e 37 20 20 20 36 32 | 2|4.7 62|
|000004b0| 34 2e 39 31 0a 20 20 20 | 20 20 20 20 20 32 34 2e |4.91. | 24.|
|000004c0| 38 20 20 20 36 32 34 2e | 39 36 0a 20 20 20 20 20 |8 624.|96. |
|000004d0| 20 20 20 32 34 2e 39 20 | 20 20 36 32 34 2e 39 39 | 24.9 | 624.99|
|000004e0| 0a 20 20 20 20 20 20 20 | 20 32 35 2e 20 20 20 20 |. | 25. |
|000004f0| 36 32 35 2e 0a 20 20 20 | 20 20 20 20 20 32 35 2e |625.. | 25.|
|00000500| 31 20 20 20 36 32 34 2e | 39 39 0a 20 20 20 20 20 |1 624.|99. |
|00000510| 20 20 20 32 35 2e 32 20 | 20 20 36 32 34 2e 39 36 | 25.2 | 624.96|
|00000520| 0a 20 20 20 20 20 20 20 | 20 32 35 2e 33 20 20 20 |. | 25.3 |
|00000530| 36 32 34 2e 39 31 0a 20 | 20 20 20 20 20 20 20 5c |624.91. | \|
|00000540| 65 6e 64 7b 76 65 72 62 | 61 74 69 6d 7d 0a 20 20 |end{verb|atim}. |
|00000550| 20 20 20 20 20 20 0a 5c | 69 74 65 6d 20 53 65 65 | .\|item See|
|00000560| 20 46 69 67 75 72 65 20 | 31 2e 0a 20 20 20 20 20 | Figure |1.. |
|00000570| 20 20 20 20 20 20 20 20 | 20 20 20 5c 62 65 67 69 | | \begi|
|00000580| 6e 7b 66 69 67 75 72 65 | 7d 5b 68 74 62 5d 0a 20 |n{figure|}[htb]. |
|00000590| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 5c | | \|
|000005a0| 65 70 73 66 79 73 69 7a | 65 20 31 30 30 70 74 0a |epsfysiz|e 100pt.|
|000005b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000005c0| 5c 63 65 6e 74 65 72 6c | 69 6e 65 7b 5c 65 70 73 |\centerl|ine{\eps|
|000005d0| 66 66 69 6c 65 7b 61 6e | 73 33 70 31 2e 65 70 73 |ffile{an|s3p1.eps|
|000005e0| 7d 7d 0a 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |}}. | |
|000005f0| 20 20 20 5c 63 61 70 74 | 69 6f 6e 7b 47 72 61 70 | \capt|ion{Grap|
|00000600| 68 20 6f 66 20 24 41 28 | 78 29 24 20 69 6e 20 74 |h of $A(|x)$ in t|
|00000610| 68 65 20 63 72 69 74 69 | 63 61 6c 20 72 65 67 69 |he criti|cal regi|
|00000620| 6f 6e 20 6f 66 20 50 72 | 6f 62 6c 65 6d 20 31 2e |on of Pr|oblem 1.|
|00000630| 7d 20 0a 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |} . | |
|00000640| 20 20 20 5c 65 6e 64 7b | 66 69 67 75 72 65 7d 0a | \end{|figure}.|
|00000650| 0a 5c 69 74 65 6d 20 54 | 68 65 20 6d 61 78 69 6d |.\item T|he maxim|
|00000660| 69 7a 69 6e 67 20 24 78 | 24 20 69 73 20 68 61 6c |izing $x|$ is hal|
|00000670| 66 2d 77 61 79 20 62 65 | 74 77 65 65 6e 20 74 68 |f-way be|tween th|
|00000680| 65 20 7a 65 72 6f 65 73 | 2c 20 74 68 61 74 20 69 |e zeroes|, that i|
|00000690| 73 20 24 78 20 3d 20 32 | 35 24 2e 20 20 20 4f 6e |s $x = 2|5$. On|
|000006a0| 65 20 77 61 79 20 74 6f | 20 6a 75 73 74 69 66 79 |e way to| justify|
|000006b0| 20 74 68 69 73 20 69 73 | 20 74 6f 20 6d 75 6c 74 | this is| to mult|
|000006c0| 69 70 6c 79 20 6f 75 74 | 20 74 68 65 20 70 6f 6c |iply out| the pol|
|000006d0| 79 6e 6f 6d 69 61 6c 20 | 61 6e 64 20 63 6f 6d 70 |ynomial |and comp|
|000006e0| 6c 65 74 65 20 74 68 65 | 20 73 71 75 61 72 65 3a |lete the| square:|
|000006f0| 20 24 41 28 78 29 20 3d | 20 35 30 78 20 2d 20 78 | $A(x) =| 50x - x|
|00000700| 5e 32 20 3d 20 2d 28 78 | 20 2d 20 32 35 29 5e 32 |^2 = -(x| - 25)^2|
|00000710| 20 2b 20 36 32 35 24 2e | 20 20 54 68 69 73 20 66 | + 625$.| This f|
|00000720| 6f 72 6d 20 6f 66 20 74 | 68 65 20 65 71 75 61 74 |orm of t|he equat|
|00000730| 69 6f 6e 20 73 68 6f 77 | 73 20 63 6c 65 61 72 6c |ion show|s clearl|
|00000740| 79 20 74 68 61 74 20 24 | 41 20 5c 6c 65 71 20 36 |y that $|A \leq 6|
|00000750| 32 35 24 20 66 6f 72 20 | 61 6c 6c 20 24 78 24 20 |25$ for |all $x$ |
|00000760| 61 6e 64 20 61 63 74 75 | 61 6c 6c 79 20 61 63 68 |and actu|ally ach|
|00000770| 69 65 76 65 73 20 74 68 | 65 20 6d 61 78 69 6d 75 |ieves th|e maximu|
|00000780| 6d 20 76 61 6c 75 65 20 | 24 41 20 3d 20 36 32 35 |m value |$A = 625|
|00000790| 24 20 61 74 20 24 78 20 | 3d 20 32 35 24 2e 20 20 |$ at $x |= 25$. |
|000007a0| 4e 6f 74 65 3a 20 74 68 | 65 20 60 60 62 65 74 77 |Note: th|e ``betw|
|000007b0| 65 65 6e 20 74 68 65 20 | 7a 65 72 6f 65 73 20 69 |een the |zeroes i|
|000007c0| 64 65 61 27 27 20 69 73 | 20 6c 69 6d 69 74 65 64 |dea'' is| limited|
|000007d0| 20 74 6f 20 71 75 61 64 | 72 61 74 69 63 73 2d 2d | to quad|ratics--|
|000007e0| 2d 61 6e 6f 74 68 65 72 | 20 61 6e 64 20 66 61 72 |-another| and far|
|000007f0| 20 6d 6f 72 65 20 67 65 | 6e 65 72 61 6c 20 61 6e | more ge|neral an|
|00000800| 73 77 65 72 20 74 6f 20 | 74 68 69 73 20 71 75 65 |swer to |this que|
|00000810| 73 74 69 6f 6e 20 69 73 | 20 74 68 61 74 20 74 68 |stion is| that th|
|00000820| 65 20 6d 61 78 69 6d 75 | 6d 20 6f 63 63 75 72 73 |e maximu|m occurs|
|00000830| 20 77 68 65 72 65 20 74 | 68 65 20 74 61 6e 67 65 | where t|he tange|
|00000840| 6e 74 20 74 6f 20 74 68 | 65 20 66 75 6e 63 74 69 |nt to th|e functi|
|00000850| 6f 6e 20 69 73 20 68 6f | 72 69 7a 6f 6e 74 61 6c |on is ho|rizontal|
|00000860| 2e 20 20 54 68 65 20 70 | 75 72 73 75 69 74 20 61 |. The p|ursuit a|
|00000870| 6e 64 20 72 65 66 69 6e | 65 6d 65 6e 74 20 6f 66 |nd refin|ement of|
|00000880| 20 74 68 69 73 20 69 6e | 73 69 67 68 74 20 69 73 | this in|sight is|
|00000890| 20 61 20 6c 61 72 67 65 | 20 70 61 72 74 20 6f 66 | a large| part of|
|000008a0| 20 74 68 69 73 20 73 65 | 6d 65 73 74 65 72 27 73 | this se|mester's|
|000008b0| 20 77 6f 72 6b 2e 20 20 | 41 74 20 74 68 65 20 70 | work. |At the p|
|000008c0| 72 65 73 65 6e 74 20 74 | 69 6d 65 2c 20 74 68 69 |resent t|ime, thi|
|000008d0| 73 20 63 72 69 74 65 72 | 69 61 20 69 73 20 6e 6f |s criter|ia is no|
|000008e0| 74 20 70 72 61 63 74 69 | 63 61 6c 20 66 6f 72 20 |t practi|cal for |
|000008f0| 75 73 2c 20 73 69 6e 63 | 65 20 77 65 20 64 6f 6e |us, sinc|e we don|
|00000900| 27 74 20 79 65 74 20 6b | 6e 6f 77 20 68 6f 77 20 |'t yet k|now how |
|00000910| 74 6f 20 66 69 6e 64 20 | 74 68 65 20 24 78 24 27 |to find |the $x$'|
|00000920| 73 20 74 68 61 74 20 6d | 61 6b 65 20 74 68 65 20 |s that m|ake the |
|00000930| 74 61 6e 67 65 6e 74 20 | 68 6f 72 69 7a 6f 6e 74 |tangent |horizont|
|00000940| 61 6c 2d 2d 2d 62 75 74 | 20 77 65 20 73 6f 6f 6e |al---but| we soon|
|00000950| 20 77 69 6c 6c 21 20 20 | 28 4e 6f 20 63 72 65 64 | will! |(No cred|
|00000960| 69 74 20 66 6f 72 20 75 | 73 69 6e 67 20 74 68 69 |it for u|sing thi|
|00000970| 73 20 6d 65 74 68 6f 64 | 20 6e 6f 77 2c 20 69 66 |s method| now, if|
|00000980| 20 79 6f 75 20 68 61 70 | 70 65 6e 20 74 6f 20 68 | you hap|pen to h|
|00000990| 61 76 65 20 63 6f 76 65 | 72 65 64 20 74 68 69 73 |ave cove|red this|
|000009a0| 20 6e 6f 74 69 6f 6e 20 | 69 6e 20 68 69 67 68 20 | notion |in high |
|000009b0| 73 63 68 6f 6f 6c 2e 29 | 0a 0a 5c 69 74 65 6d 20 |school.)|..\item |
|000009c0| 49 6e 20 60 60 72 65 61 | 6c 20 6c 69 66 65 27 27 |In ``rea|l life''|
|000009d0| 20 61 6e 79 20 6e 75 6d | 62 65 72 20 6f 66 20 6f | any num|ber of o|
|000009e0| 74 68 65 72 20 72 65 73 | 74 72 69 63 74 69 6f 6e |ther res|triction|
|000009f0| 73 20 6d 69 67 68 74 20 | 61 70 70 6c 79 2e 20 20 |s might |apply. |
|00000a00| 46 6f 72 20 65 78 61 6d | 70 6c 65 2c 20 74 68 65 |For exam|ple, the|
|00000a10| 20 6e 65 65 64 20 66 6f | 72 20 6f 75 72 20 69 72 | need fo|r our ir|
|00000a20| 72 69 67 61 74 69 6f 6e | 20 6c 69 6e 65 73 20 74 |rigation| lines t|
|00000a30| 6f 20 62 65 20 61 62 6c | 65 20 74 6f 20 72 65 61 |o be abl|e to rea|
|00000a40| 63 68 20 61 6c 6c 20 70 | 61 72 74 73 20 6f 66 20 |ch all p|arts of |
|00000a50| 74 68 65 20 70 61 74 63 | 68 2e 0a 20 20 20 20 20 |the patc|h.. |
|00000a60| 20 20 20 20 20 20 20 20 | 20 20 20 0a 5c 69 74 65 | | .\ite|
|00000a70| 6d 20 20 53 74 69 6c 6c | 20 6c 61 62 65 6c 69 6e |m Still| labelin|
|00000a80| 67 20 6f 6e 65 20 73 69 | 64 65 20 61 73 20 24 78 |g one si|de as $x|
|00000a90| 24 2c 20 77 65 20 66 69 | 6e 64 20 74 68 61 74 20 |$, we fi|nd that |
|00000aa0| 74 68 65 20 61 64 6a 61 | 63 65 6e 74 20 73 69 64 |the adja|cent sid|
|00000ab0| 65 20 68 61 73 20 6c 65 | 6e 67 74 68 20 24 50 2f |e has le|ngth $P/|
|00000ac0| 32 20 2d 20 78 24 2c 20 | 73 6f 20 74 68 61 74 20 |2 - x$, |so that |
|00000ad0| 74 68 65 20 61 72 65 61 | 20 69 73 20 24 41 28 78 |the area| is $A(x|
|00000ae0| 29 20 3d 20 78 28 50 2f | 32 20 2d 20 78 29 24 2e |) = x(P/|2 - x)$.|
|00000af0| 20 20 20 55 73 69 6e 67 | 20 74 68 65 20 60 60 68 | Using| the ``h|
|00000b00| 61 6c 66 2d 77 61 79 20 | 62 65 74 77 65 65 6e 20 |alf-way |between |
|00000b10| 74 68 65 20 7a 65 72 6f | 65 73 27 27 20 69 6e 73 |the zero|es'' ins|
|00000b20| 69 67 68 74 2c 20 77 65 | 20 69 6e 74 75 69 74 20 |ight, we| intuit |
|00000b30| 74 68 61 74 20 74 68 65 | 20 6d 61 78 69 6d 69 7a |that the| maximiz|
|00000b40| 69 6e 67 20 24 78 20 3d | 20 50 2f 34 24 20 61 6e |ing $x =| P/4$ an|
|00000b50| 64 20 74 68 61 74 20 74 | 68 65 20 63 6f 72 72 65 |d that t|he corre|
|00000b60| 73 70 6f 6e 64 69 6e 67 | 20 61 72 65 61 20 69 73 |sponding| area is|
|00000b70| 20 24 41 20 3d 20 50 5e | 32 2f 31 36 24 2e 20 20 | $A = P^|2/16$. |
|00000b80| 43 6f 6d 70 6c 65 74 69 | 6e 67 20 74 68 65 20 73 |Completi|ng the s|
|00000b90| 71 75 61 72 65 20 76 65 | 72 69 66 69 65 73 20 74 |quare ve|rifies t|
|00000ba0| 68 69 73 20 69 6e 74 75 | 69 74 69 6f 6e 3a 20 24 |his intu|ition: $|
|00000bb0| 41 28 78 29 20 3d 20 2d | 28 78 20 2d 20 50 2f 34 |A(x) = -|(x - P/4|
|00000bc0| 29 5e 32 20 2b 20 50 5e | 32 2f 31 36 24 2e 20 20 |)^2 + P^|2/16$. |
|00000bd0| 49 6e 20 6d 6f 73 74 20 | 70 72 6f 62 6c 65 6d 73 |In most |problems|
|00000be0| 2c 20 77 65 20 77 6f 75 | 6c 64 20 6e 6f 74 20 62 |, we wou|ld not b|
|00000bf0| 65 20 61 62 6c 65 20 74 | 6f 20 68 61 6e 64 6c 65 |e able t|o handle|
|00000c00| 20 74 68 65 20 70 61 72 | 61 6d 65 74 65 72 20 73 | the par|ameter s|
|00000c10| 6f 20 63 6c 65 61 6e 6c | 79 2e 20 20 49 6e 20 74 |o cleanl|y. In t|
|00000c20| 68 65 20 61 62 73 65 6e | 63 65 20 6f 66 20 73 6f |he absen|ce of so|
|00000c30| 6d 65 20 74 68 65 6f 72 | 65 74 69 63 61 6c 20 72 |me theor|etical r|
|00000c40| 65 73 75 6c 74 20 6f 72 | 20 62 6c 69 6e 64 69 6e |esult or| blindin|
|00000c50| 67 20 66 6c 61 73 68 20 | 6f 66 20 69 6e 73 69 67 |g flash |of insig|
|00000c60| 68 74 2c 20 77 65 20 6d | 69 67 68 74 20 77 65 6c |ht, we m|ight wel|
|00000c70| 6c 20 70 69 63 6b 20 73 | 6f 6d 65 20 60 60 74 79 |l pick s|ome ``ty|
|00000c80| 70 69 63 61 6c 27 27 20 | 24 50 24 2d 76 61 6c 75 |pical'' |$P$-valu|
|00000c90| 65 73 20 61 6e 64 20 75 | 73 65 20 67 72 61 70 68 |es and u|se graph|
|00000ca0| 69 63 61 6c 2f 74 61 62 | 75 6c 61 72 20 6f 72 20 |ical/tab|ular or |
|00000cb0| 6f 74 68 65 72 20 6d 65 | 74 68 6f 64 73 20 74 6f |other me|thods to|
|00000cc0| 20 61 74 74 65 6d 70 74 | 20 74 6f 20 66 6f 72 6d | attempt| to form|
|00000cd0| 20 61 20 68 79 70 6f 74 | 68 65 73 69 73 20 61 62 | a hypot|hesis ab|
|00000ce0| 6f 75 74 20 74 68 65 20 | 67 65 6e 65 72 61 6c 20 |out the |general |
|00000cf0| 63 61 73 65 2e 0a 20 20 | 20 20 20 20 20 20 5c 65 |case.. | \e|
|00000d00| 6e 64 7b 65 6e 75 6d 65 | 72 61 74 65 7d 0a 0a 5c |nd{enume|rate}..\|
|00000d10| 69 74 65 6d 20 46 72 6f | 6d 20 46 69 67 75 72 65 |item Fro|m Figure|
|00000d20| 20 32 20 28 79 6f 75 20 | 5c 45 6d 7b 64 69 64 7d | 2 (you |\Em{did}|
|00000d30| 20 64 72 61 77 20 61 20 | 66 69 67 75 72 65 2c 20 | draw a |figure, |
|00000d40| 64 69 64 6e 27 74 20 79 | 6f 75 3f 29 2c 20 77 65 |didn't y|ou?), we|
|00000d50| 20 73 65 65 20 74 68 61 | 74 20 6e 6f 77 20 24 41 | see tha|t now $A|
|00000d60| 28 78 29 20 3d 20 32 78 | 28 35 30 20 2d 20 78 29 |(x) = 2x|(50 - x)|
|00000d70| 24 2e 20 20 20 55 73 69 | 6e 67 20 74 68 65 20 60 |$. Usi|ng the `|
|00000d80| 60 68 61 6c 66 2d 77 61 | 79 20 62 65 74 77 65 65 |`half-wa|y betwee|
|00000d90| 6e 27 27 20 69 6e 73 69 | 67 68 74 20 66 6f 72 20 |n'' insi|ght for |
|00000da0| 70 61 72 61 62 6f 6c 61 | 73 20 6f 72 20 73 6f 6d |parabola|s or som|
|00000db0| 65 20 6f 74 68 65 72 20 | 6d 65 74 68 6f 64 2c 20 |e other |method, |
|00000dc0| 66 69 6e 64 20 74 68 61 | 74 20 74 68 65 20 6d 61 |find tha|t the ma|
|00000dd0| 78 69 6d 69 7a 69 6e 67 | 20 24 78 20 3d 20 32 35 |ximizing| $x = 25|
|00000de0| 24 20 61 6e 64 20 74 68 | 65 20 6d 61 78 69 6d 75 |$ and th|e maximu|
|00000df0| 6d 20 76 61 6c 75 65 20 | 69 73 20 24 41 20 3d 20 |m value |is $A = |
|00000e00| 31 32 35 30 24 20 6d 24 | 5e 32 24 20 28 65 78 61 |1250$ m$|^2$ (exa|
|00000e10| 63 74 6c 79 20 74 77 69 | 63 65 20 61 73 20 6c 61 |ctly twi|ce as la|
|00000e20| 72 67 65 20 61 73 20 66 | 6f 72 20 74 68 65 20 34 |rge as f|or the 4|
|00000e30| 2d 73 69 64 65 64 20 63 | 61 73 65 29 2e 20 20 20 |-sided c|ase). |
|00000e40| 20 46 6f 72 20 74 68 65 | 20 67 65 6e 65 72 61 6c | For the| general|
|00000e50| 20 63 61 73 65 2c 20 74 | 68 65 20 66 6f 72 6d 75 | case, t|he formu|
|00000e60| 6c 61 20 69 73 20 24 41 | 28 78 29 20 3d 20 32 78 |la is $A|(x) = 2x|
|00000e70| 28 50 2f 32 20 2d 20 78 | 29 24 20 77 69 74 68 20 |(P/2 - x|)$ with |
|00000e80| 6d 61 78 69 6d 75 6d 20 | 61 74 20 24 78 20 3d 20 |maximum |at $x = |
|00000e90| 50 2f 34 24 20 6f 66 20 | 73 69 7a 65 20 24 41 20 |P/4$ of |size $A |
|00000ea0| 3d 20 50 5e 32 2f 38 24 | 2e 0a 0a 5c 62 65 67 69 |= P^2/8$|...\begi|
|00000eb0| 6e 7b 66 69 67 75 72 65 | 7d 5b 68 74 62 5d 0a 5c |n{figure|}[htb].\|
|00000ec0| 65 70 73 66 79 73 69 7a | 65 20 31 30 30 70 74 0a |epsfysiz|e 100pt.|
|00000ed0| 5c 63 65 6e 74 65 72 6c | 69 6e 65 7b 5c 65 70 73 |\centerl|ine{\eps|
|00000ee0| 66 66 69 6c 65 7b 61 6e | 73 33 70 32 2e 65 70 73 |ffile{an|s3p2.eps|
|00000ef0| 7d 7d 0a 5c 63 61 70 74 | 69 6f 6e 7b 44 69 61 67 |}}.\capt|ion{Diag|
|00000f00| 72 61 6d 20 66 6f 72 20 | 50 72 6f 62 6c 65 6d 20 |ram for |Problem |
|00000f10| 32 2e 7d 20 0a 5c 65 6e | 64 7b 66 69 67 75 72 65 |2.} .\en|d{figure|
|00000f20| 7d 0a 0a 20 20 20 20 20 | 20 20 20 0a 5c 69 74 65 |}.. | .\ite|
|00000f30| 6d 20 20 4e 6f 74 65 20 | 74 68 61 74 20 6e 6f 77 |m Note |that now|
|00000f40| 2c 20 77 65 20 77 61 6e | 74 20 74 6f 20 5c 45 6d |, we wan|t to \Em|
|00000f50| 7b 6d 69 6e 69 6d 69 7a | 65 7d 20 74 68 65 20 70 |{minimiz|e} the p|
|00000f60| 65 72 69 6d 65 74 65 72 | 2e 20 20 46 72 6f 6d 20 |erimeter|. From |
|00000f70| 46 69 67 75 72 65 20 33 | 2c 20 77 65 20 73 65 65 |Figure 3|, we see|
|00000f80| 20 74 68 61 74 20 74 68 | 65 20 73 75 6d 20 6f 66 | that th|e sum of|
|00000f90| 20 73 69 64 65 20 6c 65 | 6e 67 74 68 73 20 69 73 | side le|ngths is|
|00000fa0| 20 24 4c 20 3d 20 78 20 | 2b 20 31 30 30 30 2f 78 | $L = x |+ 1000/x|
|00000fb0| 20 2b 20 78 20 3d 20 32 | 78 20 2b 20 31 30 30 30 | + x = 2|x + 1000|
|00000fc0| 2f 78 24 2e 20 0a 0a 5c | 62 65 67 69 6e 7b 66 69 |/x$. ..\|begin{fi|
|00000fd0| 67 75 72 65 7d 5b 68 74 | 62 5d 0a 5c 65 70 73 66 |gure}[ht|b].\epsf|
|00000fe0| 79 73 69 7a 65 20 31 30 | 30 70 74 0a 5c 63 65 6e |ysize 10|0pt.\cen|
|00000ff0| 74 65 72 6c 69 6e 65 7b | 5c 65 70 73 66 66 69 6c |terline{|\epsffil|
|00001000| 65 7b 61 6e 73 33 70 33 | 61 2e 65 70 73 7d 7d 0a |e{ans3p3|a.eps}}.|
|00001010| 5c 63 61 70 74 69 6f 6e | 7b 44 69 61 67 72 61 6d |\caption|{Diagram|
|00001020| 20 66 6f 72 20 50 72 6f | 62 6c 65 6d 20 33 2e 7d | for Pro|blem 3.}|
|00001030| 20 0a 5c 65 6e 64 7b 66 | 69 67 75 72 65 7d 0a 4f | .\end{f|igure}.O|
|00001040| 6e 65 20 6d 6f 64 65 20 | 6f 66 20 73 6f 6c 75 74 |ne mode |of solut|
|00001050| 69 6f 6e 20 69 73 20 61 | 20 67 72 61 70 68 2e 20 |ion is a| graph. |
|00001060| 20 46 69 67 75 72 65 20 | 34 20 73 68 6f 77 73 20 | Figure |4 shows |
|00001070| 61 20 7a 6f 6f 6d 20 6f | 66 20 74 68 65 20 63 72 |a zoom o|f the cr|
|00001080| 69 74 69 63 61 6c 20 72 | 65 67 69 6f 6e 20 6f 62 |itical r|egion ob|
|00001090| 74 61 69 6e 65 64 20 28 | 61 66 74 65 72 20 73 6f |tained (|after so|
|000010a0| 6d 65 20 65 78 70 65 72 | 69 6d 65 6e 74 61 74 69 |me exper|imentati|
|000010b0| 6f 6e 29 20 62 79 20 75 | 73 69 6e 67 20 74 68 65 |on) by u|sing the|
|000010c0| 20 63 6f 6d 6d 61 6e 64 | 0a 0a 5c 54 74 7b 50 6c | command|..\Tt{Pl|
|000010d0| 6f 74 5b 32 78 20 2b 20 | 31 30 30 30 2f 78 2c 20 |ot[2x + |1000/x, |
|000010e0| 5c 7b 78 2c 20 31 30 2c | 20 35 30 5c 7d 2c 20 50 |\{x, 10,| 50\}, P|
|000010f0| 6c 6f 74 52 61 6e 67 65 | 20 2d 3e 20 5c 7b 38 30 |lotRange| -> \{80|
|00001100| 2c 20 31 35 30 5c 7d 5d | 7d 20 0a 0a 5c 6e 6f 69 |, 150\}]|} ..\noi|
|00001110| 6e 64 65 6e 74 20 50 69 | 63 6b 69 6e 67 20 74 68 |ndent Pi|cking th|
|00001120| 65 20 70 6f 69 6e 74 20 | 61 74 20 74 68 65 20 6d |e point |at the m|
|00001130| 69 6e 69 6d 75 6d 20 67 | 69 76 65 73 20 24 78 20 |inimum g|ives $x |
|00001140| 5c 61 70 70 72 6f 78 20 | 32 32 24 2e 0a 54 68 65 |\approx |22$..The|
|00001150| 6e 20 74 68 65 20 63 6f | 6d 6d 61 6e 64 0a 0a 5c |n the co|mmand..\|
|00001160| 54 74 7b 54 61 62 6c 65 | 5b 5c 7b 78 2c 20 32 78 |Tt{Table|[\{x, 2x|
|00001170| 20 2b 20 31 30 30 30 2f | 78 5c 7d 2c 20 5c 7b 78 | + 1000/|x\}, \{x|
|00001180| 2c 20 32 32 2e 32 2c 20 | 32 32 2e 34 2c 20 30 2e |, 22.2, |22.4, 0.|
|00001190| 30 35 5c 7d 5d 20 2f 2f | 54 61 62 6c 65 46 6f 72 |05\}] //|TableFor|
|000011a0| 6d 7d 0a 0a 5c 6e 6f 69 | 6e 64 65 6e 74 20 6c 65 |m}..\noi|ndent le|
|000011b0| 74 73 20 75 73 20 68 6f | 6d 65 20 69 6e 20 6f 6e |ts us ho|me in on|
|000011c0| 20 74 68 65 20 61 6e 73 | 77 65 72 3a 0a 0a 5c 62 | the ans|wer:..\b|
|000011d0| 65 67 69 6e 7b 76 65 72 | 62 61 74 69 6d 7d 0a 32 |egin{ver|batim}.2|
|000011e0| 32 2e 32 20 20 20 20 38 | 39 2e 34 34 35 0a 32 32 |2.2 8|9.445.22|
|000011f0| 2e 32 35 20 20 20 38 39 | 2e 34 34 33 38 0a 32 32 |.25 89|.4438.22|
|00001200| 2e 33 20 20 20 20 38 39 | 2e 34 34 33 0a 32 32 2e |.3 89|.443.22.|
|00001210| 33 35 20 20 20 38 39 2e | 34 34 32 37 0a 32 32 2e |35 89.|4427.22.|
|00001220| 34 20 20 20 20 38 39 2e | 34 34 32 39 0a 5c 65 6e |4 89.|4429.\en|
|00001230| 64 7b 76 65 72 62 61 74 | 69 6d 7d 0a 54 68 75 73 |d{verbat|im}.Thus|
|00001240| 20 24 78 20 5c 61 70 70 | 72 6f 78 20 32 32 2e 33 | $x \app|rox 22.3|
|00001250| 35 24 20 61 6e 64 20 24 | 41 20 5c 61 70 70 72 6f |5$ and $|A \appro|
|00001260| 78 20 38 39 2e 34 34 32 | 37 24 20 61 74 20 74 68 |x 89.442|7$ at th|
|00001270| 65 20 6d 69 6e 69 6d 75 | 6d 2e 20 20 43 61 6c 63 |e minimu|m. Calc|
|00001280| 75 6c 75 73 20 6d 65 74 | 68 6f 64 73 20 6c 65 74 |ulus met|hods let|
|00001290| 20 75 73 65 20 64 65 74 | 65 72 6d 69 6e 65 20 74 | use det|ermine t|
|000012a0| 68 61 74 20 74 68 65 20 | 65 78 61 63 74 20 61 6e |hat the |exact an|
|000012b0| 73 77 65 72 20 69 73 20 | 24 78 20 3d 20 32 20 5c |swer is |$x = 2 \|
|000012c0| 63 64 6f 74 20 35 5e 7b | 33 2f 32 7d 20 5c 61 70 |cdot 5^{|3/2} \ap|
|000012d0| 70 72 6f 78 20 20 32 32 | 2e 33 36 30 36 37 39 37 |prox 22|.3606797|
|000012e0| 37 34 39 39 37 39 24 2c | 20 67 69 76 69 6e 67 20 |749979$,| giving |
|000012f0| 61 20 6d 69 6e 69 6d 75 | 6d 20 6f 66 20 24 41 20 |a minimu|m of $A |
|00001300| 5c 61 70 70 72 6f 78 20 | 38 39 2e 34 34 32 37 31 |\approx |89.44271|
|00001310| 39 30 39 39 39 39 31 36 | 24 2e 0a 0a 5c 62 65 67 |90999916|$...\beg|
|00001320| 69 6e 7b 66 69 67 75 72 | 65 7d 5b 68 74 62 5d 0a |in{figur|e}[htb].|
|00001330| 5c 65 70 73 66 79 73 69 | 7a 65 20 39 30 70 74 0a |\epsfysi|ze 90pt.|
|00001340| 5c 63 65 6e 74 65 72 6c | 69 6e 65 7b 5c 65 70 73 |\centerl|ine{\eps|
|00001350| 66 66 69 6c 65 7b 61 6e | 73 33 70 33 62 2e 65 70 |ffile{an|s3p3b.ep|
|00001360| 73 7d 7d 0a 5c 63 61 70 | 74 69 6f 6e 7b 50 6c 6f |s}}.\cap|tion{Plo|
|00001370| 74 20 6f 66 20 32 78 20 | 2b 20 31 30 30 30 2f 78 |t of 2x |+ 1000/x|
|00001380| 20 69 6e 20 74 68 65 20 | 63 72 69 74 69 63 61 6c | in the |critical|
|00001390| 20 20 72 65 67 69 6f 6e | 2e 7d 20 0a 5c 65 6e 64 | region|.} .\end|
|000013a0| 7b 66 69 67 75 72 65 7d | 0a 0a 5c 69 74 65 6d 20 |{figure}|..\item |
|000013b0| 41 20 64 69 61 67 72 61 | 6d 20 69 73 20 73 68 6f |A diagra|m is sho|
|000013c0| 77 6e 20 69 6e 20 46 69 | 67 75 72 65 20 35 2e 20 |wn in Fi|gure 5. |
|000013d0| 20 54 68 65 20 75 6e 6b | 6e 6f 77 6e 20 69 73 20 | The unk|nown is |
|000013e0| 74 68 65 20 72 61 64 69 | 75 73 20 24 72 24 2e 20 |the radi|us $r$. |
|000013f0| 20 41 73 20 73 68 6f 77 | 6e 2c 20 74 68 65 20 71 | As show|n, the q|
|00001400| 75 61 6e 74 69 74 69 65 | 73 20 24 68 20 3d 20 31 |uantitie|s $h = 1|
|00001410| 30 24 20 61 6e 64 20 24 | 73 20 3d 20 31 30 30 30 |0$ and $|s = 1000|
|00001420| 24 20 61 72 65 20 67 69 | 76 65 6e 2e 0a 09 5c 62 |$ are gi|ven...\b|
|00001430| 65 67 69 6e 7b 65 6e 75 | 6d 65 72 61 74 65 7d 0a |egin{enu|merate}.|
|00001440| 09 5c 69 74 65 6d 20 53 | 65 65 20 46 69 67 75 72 |.\item S|ee Figur|
|00001450| 65 20 35 2e 0a 0a 5c 62 | 65 67 69 6e 7b 66 69 67 |e 5...\b|egin{fig|
|00001460| 75 72 65 7d 5b 68 74 62 | 5d 0a 5c 65 70 73 66 79 |ure}[htb|].\epsfy|
|00001470| 73 69 7a 65 20 39 30 70 | 74 0a 5c 63 65 6e 74 65 |size 90p|t.\cente|
|00001480| 72 6c 69 6e 65 7b 5c 65 | 70 73 66 66 69 6c 65 7b |rline{\e|psffile{|
|00001490| 61 6e 73 33 70 34 2e 65 | 70 73 7d 7d 0a 5c 63 61 |ans3p4.e|ps}}.\ca|
|000014a0| 70 74 69 6f 6e 7b 44 69 | 61 67 72 61 6d 20 66 6f |ption{Di|agram fo|
|000014b0| 72 20 50 72 6f 62 6c 65 | 6d 20 34 2e 7d 20 0a 5c |r Proble|m 4.} .\|
|000014c0| 65 6e 64 7b 66 69 67 75 | 72 65 7d 0a 09 5c 69 74 |end{figu|re}..\it|
|000014d0| 65 6d 20 55 73 65 20 74 | 68 65 20 72 69 67 68 74 |em Use t|he right|
|000014e0| 20 74 72 69 61 6e 67 6c | 65 20 74 6f 20 64 65 72 | triangl|e to der|
|000014f0| 69 76 65 3a 20 24 5c 63 | 6f 73 20 28 73 2f 72 29 |ive: $\c|os (s/r)|
|00001500| 20 3d 20 72 20 2f 20 28 | 72 20 2b 20 68 29 24 2c | = r / (|r + h)$,|
|00001510| 20 0a 68 65 72 65 20 24 | 68 20 3d 20 32 30 2c 20 | .here $|h = 20, |
|00001520| 73 20 3d 20 31 30 30 30 | 24 2e 0a 09 5c 65 6e 64 |s = 1000|$...\end|
|00001530| 7b 65 6e 75 6d 65 72 61 | 74 65 7d 0a 5c 65 6e 64 |{enumera|te}.\end|
|00001540| 7b 65 6e 75 6d 65 72 61 | 74 65 7d 0a 5c 65 6e 64 |{enumera|te}.\end|
|00001550| 7b 64 6f 63 75 6d 65 6e | 74 7d 0a |{documen|t}. |
+--------+-------------------------+-------------------------+--------+--------+